skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Papavassiliou, Dimitrios V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The fate and aggregation of nanoparticles (NPs) in the subsurface are important due to potentially harmful impacts on the environment and human health. This study aims to investigate the effects of flow velocity, particle size, and particle concentration on the aggregation rate of NPs in a diffusion-limited regime and build an equation to predict the aggregation rate when NPs move in the pore space between randomly packed spheres (including mono-disperse, bi-disperse, and tri-disperse spheres). The flow of 0.2 M potassium chloride (KCl) through the random sphere packings was simulated by the lattice Boltzmann method (LBM). The movement and aggregation of cerium oxide (CeO2) particles were then examined by using a Lagrangian particle tracking method based on a force balance approach. This method relied on Newton's second law of motion and took the interaction forces among particles into account. The aggregation rate of NPs was found to depend linearly on time, and the slope of the line was a power function of the particle concentration, the Reynolds (Re) and Schmidt (Sc) numbers. The exponent for theScnumber was triple that of theRenumber, which was evidence that the random movement of NPs has a much stronger effect on the rate of diffusion-controlled aggregation than the convection. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. The behavior of colloidal particles near fluid interfaces has attracted significant scientific interest, as particles minimize the contact area between the two fluid phases, stabilizing interfacial systems. This study explores the influence of surface roughness on the properties of particle monolayers at the air–water interface, focusing on colloidal silica particles and fumed silica particles of similar hydrodynamic diameter. This research involves comparing low-surface-area (LSA) and medium-surface-area (MSA) fumed silica particles with spherical colloidal silica particles (250 nm in diameter). Utilizing a Langmuir trough, the interfacial particle networks are compressed and expanded. Analysis of surface pressure isotherms reveals that fumed silica particle monolayers form networks at a lower particle surface coverage compared to spherical particles. The spherical particle monolayer exhibits a higher apparent surface elasticity, indicating greater resistance to the applied compression compared to fumed silica networks. Additionally, monolayers formed by fumed silica particles display hysteresis even after successive compressions and expansions due to irreversible particle interlocking and the formation of multilayered aggregates. These findings provide insights into the impact of surface roughness on the behavior of particle monolayers at fluid interfaces, offering valuable information for designing and optimizing mechanisms involved in emulsion and foam stabilization. 
    more » « less
  3. The correlation between helicity and turbulent transport in turbulent flows is probed with the use of direct numerical simulation and Lagrangian scalar tracking. Channel flow and plane Couette flow at friction Reynolds number 300 and Lagrangian data along the trajectories of fluid particles and passive particles with Schmidt numbers 0.7 and 6 are used. The goal is to identify characteristics of the flow that enhance turbulent transport from the wall, and how flow regions that exhibit these characteristics are related to helicity. The relationship between vorticity and relative helicity along particle trajectories is probed, and the relationship between the distribution of helicity conditioned on Reynolds stress quadrants is also evaluated. More importantly, the correlation between relative helicity density and the alignment of vorticity with velocity vectors and eigenvectors of the rate of strain tensor is presented. Separate computations for particles that disperse the farthest into the flow field and those that disperse the least are conducted to determine the flow structures that contribute to turbulent dispersion. The joint distribution of helicity and vertical velocity, and helicity and vertical vorticity depends on the location of particle release and the Schmidt number. The trajectories of particles that disperse the least are characterized by a correlation between the absolute value of the relative helicity density and the absolute value of the cosine between the vorticity vector and the eigenvectors of the rate of strain tensor, while the value of this correlation approaches zero for the particles that disperse the most. 
    more » « less
  4. The relation between the helicity and the rate of dissipation of turbulent kinetic energy in turbulent flows has been a matter of debate. Herein, direct numerical simulations of turbulent Poiseuille and Couette flow were used in combination with the tracking of helicity, helicity density, and dissipation along the trajectories of passive scalar markers to probe the correlation between helicity and dissipation in anisotropic turbulence. The Schmidt number of the scalar markers varied between 0.7, 6, and infinite (i.e., fluid particles), while the friction Reynolds number for both simulations was 300. The probing tools were the autocorrelation coefficients, the cross correlation coefficients between helicity and dissipation, and the joint probability density function calculated in the Lagrangian framework along the positions of the scalar markers. These markers were released at different locations within the flow field, including the viscous wall sublayer, the transition layer, the logarithmic region, and the outer flow. In addition, conditional statistics for scalar markers that dispersed most or least in the flow field were also calculated. It was found that helicity and dissipation changed along the trajectories of scalar markers; however, helicity and dissipation were not correlated in the Lagrangian framework. There was anticorrelation between helicity and dissipation in the near wall region, which was less obvious in the logarithmic region. More importantly, helicity could be used to characterize the alignment of the fluctuating velocity and vorticity vectors along the trajectories of scalar markers that disperse the farthest in the direction normal to the channel wall. 
    more » « less
  5. Abstract The configuration of proteins is critical for their biochemical behavior. Mechanical stresses that act on them can affect their behavior leading to the development of decease. The von Willebrand factor (vWF) protein circulating with the blood loses its efficacy when it undergoes non-physiological hemodynamic stresses. While often overlooked, extensional stresses can affect the structure of vWF at much lower stress levels than shear stresses. The statistical distribution of extensional stress as it applies on models of the vWF molecule within turbulent flow was examined here. The stress on the molecules of the protein was calculated with computations that utilized a Lagrangian approach for the determination of the molecule trajectories in the flow filed. The history of the stresses on the proteins was also calculated. Two different flow fields were considered as models of typical flows in cardiovascular mechanical devises, one was a Poiseuille flow and the other was a Poiseuille–Couette flow field. The data showed that the distribution of stresses is important for the design of blood flow devices because the average stress can be below the critical value for protein damage, but tails of the distribution can be outside the critical stress regime. 
    more » « less
  6. Borazjani, Iman (Ed.)
    The stress distribution along the trajectories of passive particles released in turbulent flow were computed with the use of Lagrangian methods and direct numerical simulations. The flow fields selected were transitional Poiseuille-Couette flow situations found in ventricular assist devices and turbulent flows at conditions found in blood pumps. The passive particle properties were selected to represent molecules of the von Willebrand factor (vWF) protein. Damage to the vWF molecule can cause disease, most often related to hemostasis. The hydrodynamic shear stresses along the trajectories of the particles were calculated and the changes in the distribution of stresses were determined for proteins released in different locations in the flow field and as a function of exposure time. The stress distributions indicated that even when the average applied stress was within a safe operating regime, the proteins spent part of their trajectories in flow areas of damaging stress. Further examination showed that the history of the distribution of stresses applied on the vWF molecules, rather than the average, should be used to evaluate hydrodynamically-induced damage. 
    more » « less